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THE CONTROLLABILITY OF A NON-LINEAR SYSTEM
IN A CLASS OF GENERALIZED CONTROLS*

A.G. IVANOV

When studying controllability in non-linear control systems
=1 z, u), 2R, v=Q, t=|1, T+ 0l (6>0) (0.1)
where Q is a compact subset of R™, it is generally assumed that
0 = ri (conv Q) (0.2)

and that for all (4, z2) =R X R* the set P (s, 2)={j(t =, v), u=Q} 1is a convex,
and that © is fixed. 1In this paper condition (0.2) will be replaced
by the weaker condition O conv®  and the controllability of system
(0.1) will be considered with respect to a class of generalized
controls. This makes it possible to drop the assumption that the set

P (t, ) is convex; t will not be fixed. Answers will be given to the
questions posed in /1/.

1. Let R" be a real n-dimensional space:|x | the norm of an element z& R", B,[0]=
{reR": |z |<r}, B,(0)=int B, [0, Hom (R*, R™) the space of linear operators from R" to
R™, in which the norm of an element A is defined by |4 | = sup | Az |/ |z |; comp (R"), conv (R")

x70

denote the spaces of non-empty compact and convex compact subsets of R™, respectively, each
with the Hausdorff metric dist (-, -).

Let (X m), p,®) (1> 0) denote the metric space of locally summable maps 4 :R -— Hom (R",
R™), where

3

p(ll)(A,B)='sup——: S |A(s)—B(s)|ds,t =R, 4, B= X" ™
3
t

(Y™, p{®) is the metric space of all many-valued maps V:R — conv (R") such that the map

t— | V() | = dist ({0}, V (8)) is measurable (measurability will be understood throughout in the
Lebesgue sense), esssup | V(1) | < by << o0 and
teR

T+l
o0 (V, W) = sup -1- 3 dist (V (s)), W (s))ds, t = R, V, W = ¥
t
t

Fix Ve Y™ and a segment 7 . R. Let U = By, [0l. Lt = L(T, U; R™) be the normed
space of all functions ¢: 7 X U —> R" such that the map t— ¢ (f, ¥) is measurable, ¢ (¢, -) =
C (U)= C (U, R"), there exists a summable function V¥ :7 — R such that for almost every
(a.e.) |@(t <) = max|¢( w)| <Y (). Let frm (U) denote the linear space of Radon measures

max uslU

in R" with support in U, and rpm (U) the subset of frm (U) consisting of all reqular prob-
ability measures.
Furthermore, let Nr be the set of measurable maps p: 7T — frm (U) such that esssup
t=T
fn 1) 1 (T) << oo (ln (1) | (U) is the variation of the measure p(f). It can be shown /2/, that
Ny is algebraically isomorphic to the dual space of L (T, U; R!) and one can define in Nr

a weak norm |-, /2/, such that the space (Nr,||l,) 1is separable and its subset U (¥r1) =
{peENp: ()1 (U)<<1} is compact. Moreover, if p;& U (Ng),j=0,1, ..., then jlim fuy —
Bollw = 0 (we write u;—>p, as j—»oc) if and only if, for any ¢ & Ly,

lim TS<uf @ ot wddt= § o) ot u)y dt
i~ T
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where

TS<u, () @ (t, ) dt = §(LS¢(tv wypy(e)du)) dt, j =0,1,... (1.1)

Let I (V) denote the set of measurable sections of amap V&Y™, M(V)={pcsNg:
pyspm (V () for a.e. t=ERL M (V)={peM(V):p(l) =0, for a.e. te= R and some
ue I(V)}, where &, is the Dirac measure at the point w(f), and let I, (V), My o (V),

M:s(V)(1>>0,0>0) denote the restrictions of the sets I (V), M (V), M' (V) to the interval

[t,7+4 o] on the t axis. Identifying each function u& I (V) with 8y, we may view I (V)
as embedded in M (V). Henceforth we shall call M !(V) the set of (ordinary) admissible
controls and M (V) the set of generalized controls.

We shall be concerned with the non-linear control system

$'=A(t).t—}—u+g(t, z, u),xelR",ueV(t) (12)
where A= X" V=Y® and

osvV({®, t=R (1.3)

Note that condition (1.3) does not exclude the possibility that 0& 8V (}) for some or
all t. It is assumed that the function g:R X R* x U—+R" satisfies the following con-
ditions:

1) for fixed (z, ) =R"™ X U, the map t—g(t, z, u) is measurable, g£({ -, V) EC(R" X
U), t= R, and for any compact set K C R" there exists a function x & X@1D  such that
max {|g(t z, u) |, (z, )y EK XU} x(t) for a.e. t=R;

2) there exist functions g, b= X1 and constants a, f >0 such that for some y >0
lg@t z,u) |<a(@®lzle+b()|ulf for all (¢ z, w)<= R X By 101 X (U N By [0)).

We shall also assume that system (1.2) has the right uniqueness property: for any rz, = R”

and any u,& I (V) the Cauchy problem
r=A@zr+u W +glt,z u @), z(r)==z(v>0)

has a solution which is unique over the right maximum interval of its existence.

Definition 1.1. A convex control system corresponding to (1.2) is a system

=AM z+p®), ut+glt, z, ud, p=M(V) (1.4)

Clearly, if pe= Mt (V), i.e., n(#) = 8wy, v=1(V), then system (1.4) yields system (1.2)

with u = v ().

Definition 1.2. A state z, =R™ 1is said to be controllable in the interval [t, 1 + ol
(e >0) if there exists a generalized control v & M. 4 (V), such that system (1.4) with
k() =v () has a solution y(¥) satisfying the conditions y (1) = z,, ¥y (t + ¢) = 0. The set
of all controllable states of system (1.4) in the interval [1, T+ o] is called the control-
lable set of the system in that interval.

Definition 1.3. System (1.4) is said to be uniformly locally controllable if there exist
numbers g, 0 >0 such that for any 12> 0 the controllable set of system (1.4) in the

interval [t, v + o] contains the sphere B, [0].
Together with system (1.4), let us consider the system
=AW+ ), uwy, neM (V) (1.5)

It can be shown that, if D (1,0, V) denotes the controllable set of system (1.5) in
[t, T + ol, then

T+

Do V)={— § e, 0@ udtue M. (V)

where @ (-, -) is the Cauchy operator of the system 2= 4 () z..1t follows from the equality {<p (?),
D, Hup, p & My, o (V) =conv {®(z, ) V ()}, tIv, v + 0] and the condition V (¢) & conv (R™ that

<+
DitaV)=— { ownvmnd
T
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The integral on the right of this equality is understood as a Lyapunov integral /3, p.
239/. Hence system (1.5) is uniformly locally controllable (ULC) in the class of generalized
controls if and only if the linear system

2 A+ uue= V) (1.5}
is ULC.
Lemma 1.1. Let system (1.5) be equipolarly locally controllable, and let ¢, ¢ >0 be
the numbers appearing in the definition of ULC for the system.

Assume, moreover, that the function g (¢, 2, u) satisfies conditions 1, 2 and that at least
one of the following conditions holds:

Swp <A, if a - P (1.7)
S, LA if a=1,8 >1
s A If a>1. B =1

TG
»

I B N \
(e=p1 (4,0) k=0, g sup \ a(s)ds)

T v
T

Then there exists 6= (0, v/ such that for any function y < C (K, Bsl0l) the system
=AMz ), ut gt oy @), W, weE M(BY) (1.8)
is ULC and for any 71 >0 and
2y & Beyyy (01, v, = e%98/(30) (1.9)

there exists a generalized control v & My (8V) such that if p(f) =+~ (f) system (1.8) has
a solution =z (t) such that

z(t) =4, z2(t+0)=0 and z()= B0l for teit, v+ ol

Proof. The constant 6>0 is chosen in the same way as the analogous constant in the
case of ordinary controls (see Lemma 2.1 in /4/). A direct check will convince the reader
that

T+o
pr@ud =~ § wo.omowisuyoun e p = My, o0}
T

yeE C(T, BglOl), T=Ir, v+ o}

is the controllable set for system (1.8) in the interval {r, 1+ o]. Now, noting that

2 > max | D (1,8) |, W) =rpm (8 (2)
te=T

for a.e. te=T, one completes the proof by analogy with Lemma 2.1 of /4/.

2. Theorem 2.1. Let system (1.5) be ULC (which is true, as noted above, if and only if
system (1.6) is ULC), and let &, 0 >0 be the numbers appearing in the definition of ULC for
this system. Assume that the function g (¢, z, u) satisfies conditions 1, 2. Then, if one of
conditions (1.7) is satisfied, system (1.4) is ULC.

Proof. 1If one of conditions (1.7) is satisfied, then by Lemma 1.1 there exists 6 = (0, y}
such that system (1.8) is ULC. Choose any =t > 0,1z, satisfying condition (1.9) and a function
y, = C (T, By 0D, where T = [t, 1t + o¢l. Again by Lemma 1.1, there exists a generalized
control p, &= M., (8V), such that if p(H =p, () and y( =y, (#) system (1.8) has a
solution y,;(f) such that y, ()& Bsl0l, t= T, and y, (t) = z,, ya (t + 0) = 0. Similarly, if
y(t) =y, (¥) there exists a generalized control u, & M., (8V) such that when y (&) =y, (¢)
system (1.8) has a solution y; () =Bsl0], t= T and  y; (1) = %4y Y3 (T -+ 0) = 0. Continuing
this procedure, we finally obtain a sequence of absolutely continuous functions {y,};‘;l and

a sequence of generalized controls {u;}il; C M., (8V) such that y; (v) = z,, y; (v + 0) = 0, y; ()=
BslO), t=T,j=1,2,... and

t

U () = O ()20 + § s (61 @ (1, 9)(u + g (5, 9 (), w))> s 2)

T

Moreover, the sequence of functions {y;}iZ; is equicontinuous. Consequently, by the
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Arzela-Ascoli theorem /5, p.236/ one can extract from {y;}j=, a subsequence {y,k};‘Ll which

converges uniformly to a function ze&C (T, B [0)). Clearly, z (1) = zg,z (v + 6) = 0. But
M, s (8V) is a compact subset of the space (Nr, |- llo) . Hence we can extract from {u,k},?;l
a subsequence which converges (in the weak norm || -|l») to a generalized control v < M, 4 (§V).

Let us assume that p; —v as k- oo. This means that for any function ¢ Ly

lim § sy 51 (5su> ds = §<v (0) @ (s, ds
—+oo T

(here see (1.1)), but since for every t& T the map (s,u) — X e1(8) ¥ (r, s, u), where
Fi(t, s, y=®(t, s){u+ gl z{s uwp 2.2)
and ¥ () is the characteristic function of 1, tl, is a member of Ly, it follows that

lim § oy (9t 060) ¥ (58,00 ds = § 0@ a0 (9) ¥ (5, w)> ds
oo T
This limit relation, together with (2.1), implies that

¢

2(t) =D (t, 1) [zo + S vi(s), ¥ (v, s, u)) ds]

for all te=T =1Ir,v+ol, and z (1) ==z z(t 4 0) =0.

Thus, for any =z, which satisfies condition (1.9), there exists a generalized control
v & My, o (6V) T M. o (V) such that system (1.4) with u(f) = v () has a solution 2z (%) for
which z(v) =g z(x + o) =0, i.e., for all 1> 0 the sphere By, [0l is contained in

the controllable set of system (1.4) in [r, 7 + ol
Let K (f) be the closure of the conical hull of V().

Corollary 2.1. Suppose that the system
r=Az+v,veEKQ@ (2.3)

is ULC; let & o0 >0 Dbe the numbers figuring in the definition of ULC for the system, and
assume that g (f, z, u) satisfies conditions 1, 2. Then, if one of conditions (1.7) holds,
system (1.4) is ULC.

The proof follows from Theorem 2.1 and the results of /6/.

It should be mentioned that in some cases the question of whether system (2.3) is ULC ‘is
easier to handle than in the case of system (1.6), since the structure of the set of admissible
controls becomes simpler*. (*For example see TONKOV E.L. and IVANOV A.G., Uniform local con-
trollability in the critical case and questions of oscillation. Preprint FTI Ural. Otd. Akad.
Nauk SSSR, Sverdlovsk, 1986.)

Now, since I (V) M (V) (I (V) is identified with M! (V)), it follows that whenever system
{1.2) is ULC, the same is true of system {(1.4). But if for all >0 the sphere B, [0l 1is
contained in the controllable set of system (1.4) in [t, v + a], then one cannot generally
state, without further assumptions (e.g., that the velOClLy field is convex /7, 8/}, that
B. (0] lies in the controllable set of system (1.2) in [t,t 4 ol. Nevertheless, the follow-
ing theorem is true.

Theorem 2.2. Under the assumptions of Theorem 2.1, let the function g({t, z,u) satisfy
the following additional conditions:

3) there exists a function x; =X®1D such that for all «z, zze Bs (0] (concerning the
constant § >0, as well as the other constants &,6,y, mentioned below, see Lemma 1.1 and
Theorem 2.1) and ucs U lg(t, 2z, u) — g(t, x5, u) 1 <% (§) |2, — 2, | Then any point =z, satisfying
(1.9) for any >0 can be steered to any preassigned neighbourhood of zero in [1, T + ol
by means of controls from [ (V).

Proof. By Theorem 2.1, for any t>0, z, which satisfy (1.9), there exists a general-
ized control ve& My 4 (V) such that system (1.4) with p () = v () has a solution z (t) & B, [0],

=T =It,t4+ 0] and z{1) ==z¢2{t+0)=0. By the approximation lemma /2, 7/, there exists

a sequence of functions (u,)f, < I (V), such thar_ 8y, ~—>v as joo. Now, if z;(t) is

a solution of system (1.4) with initial condition #; (t) = #,, corresponding to the control
P {ty = 6.‘!(,), then
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$
25(0) = © (1, V2 + § Bugor O (5, ) + ¢ (5,2 (51, )3 ds |

T

Using the Gronwall-Bellman inequality, we get

T

max |, (t) — z (8)| < exp (eosup § %, (s) ds) ot (2.4)
=y N =20 oy

'
By = IPE;,\TX l§<v (8} — Bu e Y, s,u))ds ‘

{the map ¥ (v, s, u) is defined by formula {(2.2)}.

It follows from the conditions imposed on the function g (3, z,u)
¥(t,s, u) lies in Ly. Hence it follows from the condition: ﬁuj—rv as
0 as j— oc; together with (2.4), this proves Theorem 2.2.

We will now establish a sufficient condition for the uniform local controllability

(3.1)

that the map (s, u)—
j— o that lim &y =

3.
of a system
' =={ut), (2, u)), = R*, p= M (Q), Q & comp (R™
where it is not assumed that f is differentiable with respect to u (i.e., system (3.1) cannot
be expressed in the form (1.4)), and answer certain questions posed in /1/.

The function f: R X R" X Q- R" is assumed to satisfy the following conditions:

4) the map t—f (i, z,u), (z,u) = R® X @ is measurable, f(¢,0,0)=0 and for any compact set
KR there exists a function Wy e= X( 1  guch that

max {|/{f x, v} |, &7, wy = K X Q} LW (B

5) themap z->f{t, =z, u), {t, y= R X € 1is differentiable; the maps u-—>f(t,0, u), u—
i 0, u), t= R are such that for any n >0 there exists A >0 for which

41

sup § (17 (5.0, + |1 (5.0,u) — £ (6,0,0) ) ds <, u &= Ba (0)
20 ¢

Consider the system

o= D (0w x4 (), f (0, u) 4t 2, u) 8.2y

with p= M (Q), where the function 72 R X R® X Q —+ R" satisfies the following conditions:
6) the map t—>r{f,x,u),{r, ) € R" X Q@ 1is measurable, r({t -. )= C(R* X Q),t=R and
for any compact set K (C R™ there exists a function %z e X &2 such that
max {|r ¢ = u) | (@ )= K X Q) xg ()

7} there exist a function a= X%V and a constant o >0 such that
frtz,wyi<aeWlzl Vi, 2, ) @R XB,I0IXQ (y >0

We shall alsc assume that system {3.2) has the right uniqueness property.
Let

T+l

¢ = sup S £ @05 +) lmax dt
=0 3

and choose 6< (0, y1  so that

e
¥ e 0
et sup 5 max 1£(8,0,u)|dt < L, Qs = Q [} Bs[0] (3.3).

Clearly, if system (3.2) is ULC for p e M (), then it is also ULC for pe M (R).

Theorem 3.1. Let f: RXR' X Q>R rnR X R*XQ-+R"” be functions satisfying con-
ditions 4, 5 and 6, 7, respectively. Then system {3.2) with p e M {Q,;) (conseguently, also

with pe= M (Q) is ULC if it is ULC for r=0 and pe M (Q).
Theorem 3.1 answers certain questions posed in /l/. It should also be noted that it is



617

useful in studying controllability questions for system (3.1) when [ (£, 0,0)=s0 and f is not
differentiable with respect to u.

e Rl Al o ssesos g few facts and some n
To prove the theorem, we need a few facts and £l

Let @ {, s; p) Dbe the Cauchy operator of the system

&=t f (00w T = Lns £ (6,0, u) p (O(dw)) =
(]

THY

Deto) = {— { ), @@ ;w70 0,w) dt, p e M, o (Q0)} 3.4)
T

is the controllable set of system (3.2) with r=0, p S M, (), and D.{g) C D (o), if
a0y << Gy We may therefore assume that o > 1,

Lemma 3.1. For any 7 >0 Dy (0) €= conv (R™).

Proof. Using the condition g {f}erpm (), one can shown that

max @ (r, # p) | <&

et
pat Lo 20

for all *> 0. Hence it follows that the set

fea {8Y rh!»r o .\614 & nly e
LA =

QN g T iy
W by BT AN Uy B2 Wegigy v = L =

H Ty

Mo s T gl
is bounded and therefore, by a theorem of Lyapunov /3, p.350/, D.(0) is a bounded convex
subset of R™

We assert that it is also closed. Let {zjey C D, (0} and suppose that gz;-z, as j-»oo.
Then {see {3.4))

¢
=) By (5 @ (v, 5p)f (s, O, up ds
T
Singe iy X = A 0. and M 0. is a ronvexy comnact cuhcet of tho gnacs N
ey & Ay o 350 ana M, ,{{%) 1g & convex compact subset oI the space Np, 33' Tt

we may assume that lim [p;—tf,=0 and p,= M,  (Q,). Hence,
oo '

Fed Fed
f;ﬂ% Gy lsh 1,/ (5.0, 8)> ds =§' Mo (s), . (5,0, u)> de

Ty == - S o (8), DT, 83 1) F 5, 0, ) ds
T

i.e., zeD (o). This proves Lemma 3.1.

Lemma 3.2. Suppose that for r==0, p e M (Q) system (3.2) is UIC, i.e., for all 7320
and some g, ¢ > 0 B, [01 C Dy (0), the constant § >0 is defined by (3.3) and

s *S'"' a(s)ds < T %0, g €= (0 — 'ye‘m)
T

Then for any function ye& C{R, B,[0l) the system
=Lty 00 upx -k (u (), £ 0, w) g (2 w) (3.5)
o TITL  pien oo reann £ pma s e~ ) o e DD 10! there exis .
Wr lc:.e H t: l'-l \aﬂo), b Vi, , auu nmorLreuvelr LUJ- any [ ) "'0 [weel De./g jLvy} Liere calso
control v & My o (8s) such that if p () = v (f) system (3.5) has a solution :c(t) = B, [0},
[t, v+ 0] and z(t) ==z, z{x+ 0 =0
Lemma 3.2 is proved with the help of Lemma 3.1, in a manner similar to the proof of

Lemma 1.1.
Now, using the scheme of proof of Theorem 2.1. and Lemma 3.2, one can prove Theorem 3.1.

A In recent vears generalizad controls have beon intensively utilized bhoth in ontimal
4. In recent years generalized controls have been intensively utilized both in optimal
control problems and in game-theoretic situations (see, e.g., /2, 7-11/ and the references
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cited therein)*. (*See also CHENTSOV A.G., Optimization under conditions of fuzzy constraints.
Preprint, Inst. Mat. Mekh., Akad. Nauk SSSR, Sverdlovsk, 1986.) In this paper the apparatus
of generalized controls has been used to investigate uniform local controllability for a non-
linear system. Our results are important for studies of stability and well-posedness in "main-
line processes" (MP).
A brief explanation is in order. In the simplest situation, a MP (z (+), «w (+)) is a

solution of the problem

I (z(+), u«(+)) — min (4.4)

&= fo (x. w), =R, wve U, Uea comp (R™)
(), u(-) =D

where D 1is some set of functions, specifying the boundary conditions (for example, D might
be a set of periodic or almost-periodic functions), and I a functional defined on D. Let
us say that the process (z(.), w(-)) 1is uniformly locally stable (or that the problem of the
MP is well-posed) if there exist ¢,0>0 such that for any >0 and any =z, 3,[0] there
is a control

ugtlt, T+ ol -=Q@W=U—w ()
such that the system

= fo 2+, w()+u) -2 () (4.2)
with u=u,(/), has a solution =z(f) which satisfies the conditions z(m)=r,z(r+ 0)= 0 (i.e.,
the disturbed motion returns to the main line).

This problem possesses several features that make it difficult to handle. First, a MP is
defined on the entire real line, so it is important for the local controllability property to
be uniform in ‘the time t. Second, since w (1) is optimal, one has the condition 0 e dQ (1) for
all t (i.e., one has the so-called critical case); and, finally, system (4.2) is time-depen-=
dent.

Having rewritten system (4.2) in the form of (1.2) with

A= fox' @), w), V)= fo! (@), w)Q®

one can apply the main theorem of /4/. But under the conditons cited in that paper, apart
from the assumptions of Theorem 2.1 one also demands that the map y(.)—7T(, 255 () be con-
tinuous for every fixed pair (1, z), where T (1, z; y(-)) 1is the time needed by the system =z =
A@®z+utglt y(t), u) to get to zero from the position (1, 2). As shown by Theorem 2.1, this
condition is superfluous in the class of generalized controls.

Next, if the function f, is not differentiable with respect to u, then, Theorem 3.1 can
be returned to the main line.

Finally, as can be shown by examples, a solution of problem (4.1) may not exist in D.
nevertheless, for natural assumptions on f,, the "convexified" problem for (4.1) has a sol-
ution (), v(-)) which is a generalized MP. 1In that case one can use Theorem 2.2.
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