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THE CONTROLLABILITY OF A NON-LINEAR SYSTEM 

When studying 

where Q is a 

IN A CLASS OF GENERALIZED CONTROLS* 

A.G. IVANOV 

controllability in non-linear control systems 

2' = f (f, 5, IL), I E [Rn. U E 52, t c IT, T ~I (71 (a > 0) 
compact subset of W"', it is generally assumed that 

0 E ri (conv a) 

(0.1) 

(0.2) 
and that for all (t, Z)EW x IRn the set P (t, 2) k (I (1, 1. u), u E Q) is a convex, 
and that x is fixed. In this paper condition (0.2) will be replaced 
by the weaker condition O~.convR and the controllability of system 
(0.1) will be considered with respect to a class of generalized 
controls. This makes it possible to drop the assumption that the set 
P (1. 7) is convex: T will not be fixed. Answers will be given to the 
questions posed in /l/. 

Let R" be a real n-dimensional space,1 x 1 the norm of an element 
{z E I&: 1 I 1 < r), 

z E LQ”, B, 101 2 

B, (0) t int B, [Ol Horn (C?', [Rm) the space of linear operators from [R" to 
(R"', in which the norm of an elemeit A is defined by /A 1 + SII; 1 As I / 1 z 1; comp(lR”), conv([R") 

denote the spaces of non-empty compact and convex compact subsets of iR", respectively, each 
with 

[Rrn), 

the Hausdorff metric dist (., .). 
Let (X(n,m), pl('))(Z > 0) denote the metric space of locally summable maps A :!?-+Hom(IR", 
where 

I+1 

p:“(A,B)+- 5 JA(s)--~(s)~~~,~E[R,A,BEX(“‘~) 
t 

(Y("), pi'), is the metric space of all many-valued maps V: [R +conv([R”) such that the map 

t-t I V (t) 1 e dist ({0), V (t)) is measurable (measurability will be understood throughout in the 
Lebesgue sense), esssup I V(t) I < kV < 00 and 

r=R 
LII 

p:"(V,W)+ s;p -1 5 dist(Ti(s)), W(s))ds,tE [R,~/,WE Yt"' 
* 

Fix V E Yen) and a segment T ‘Z R. Let U f Bky LOI. LT 5 L (T, U; W”) be the normed 
space of all functions v : T X U+ [ii" such that the map 1+cp(t, U) is measurable, r~~(t, .)E 
C (u) 5 C(U, E?'), there exists a summable function $: T-+ IS! such that for almost every 
(a.e.) 1 q(t, .) I 5 ma: 1 cp(t, u)I <‘Y(t). Let frm(U) denote the linear space of Radon measures 

max 

in E?" with support in U, and rpm(U) the subset of frm(U) consisting of all regular prob- 
ability measures. 

Furthermore, let NT be the set of measurable maps p: T+ frm(U) such that esssup 
1ET 

I IL I (Q I (U) < 00 (IP (t) I (U) is the variation of the measure c1 (t) * It can be shown /2/, that 
NT is algebraically isomorphic to the dual space of L(T, U; RI) and one can define in NT 
a weak norm I/%, /2/, such that the space (NT, 11&J is separable and its subset u (NT) = 

{PENT: I p(t) I (U)Q 1) is compact. Moreover, if p,~ U(NT), j = 0, 1, . . . . then lim II Pi - 
I-- 

PO IIW = 0 (we write CLI' IL0 as j-+ DE) if and only if, for any YELT, 

1 iIn S <IQ (th Y (t, u)> dt = S <w, (t). y (t,. u)> dt 
j-m T T 
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Let Z(V) denote the set of measurable sections of a map VEY("), M(V)---{uENW: 

k (t) E rpm (V (t)) for a.e. tE R}, MI(V) k {p E M(V): p(t)= I& for a.e. TV R and Some 
u E Z (V)), where 8"(t) is the Dirac measure at the point u (t)? and let Z,,, (I'), MT,. (V), 

M:.. (V) (z > 0, (J > 0) denote the restrictions of the sets Z (V),M(V),M’(V) to the interval 

[.c, 7 + 01 on the t axis. Identifying each function uE Z (V) with Z&,(l), we may view Z(v) 
as embedded in M(V). Henceforth we shall call M*(V) the set of (ordinary) admissible 
controls and 111 (V) the set of generalized controls. 

We shall be concerned with the non-linear control system 

x' = A (t) .r + U + g (t, 5, u), 5 E R”, u E v (t) 

where A E Xc”, r’), V E Y(n) and 

(1.2) 

0 E V(t), t E IR (1.3) 

Note that condition (1.3) does not exclude the possibility that OE W(t) for some or 
all t. It is assumed that the function 2: IR X R" x U-r!?" satisfies the following con- 
ditions: 

1) for fixed (5, u)E l?' X U, the map t-rg(t, z, u) is measurable, g(t, ., *) E c(R" X 
U, tE [R, and for any compact set KC b?” there exists a function x E X(1.r) such that 

max {I g (t, x, U) I, (I, a) E A X ZJ) G x (t) for a.e. tE IR; 
2) there exist functions a, b E X(1* 1) and constants a, fi>O such that for some Y>O 

I g (t. I, u) I < a 0) 15 Ia + b (6 I u lo f or all (t, 5, u) E R X By IO1 X (U fl B, [Ol). 

We shall also assume that system (1.2) has the right uniqueness property: for any X,E ii?" 
and any u,, E Z(V) the Cauchy problem 

5' = 4 (t) r + ao (t) + g (G 5, u,, (t)), r(r) = 50 (r > 0) 

has a solution which is unique over the right maximum interval of its existence. 

Definition 1.1. A convex control system corresponding to (1.2) is a system 

5' = 4 (t) x + <P (t), u + R (t, r, a)>, P EM(V) (1.4) 

Clearly, if u E M’(V), i.e., u(i)= AU(,), UEZ (V), then system (1.4) yields system (1.2) 
with u = v (t). 

Definition 1.2. A state x0 E [R" is said to be controllable in the interval [z, 'c + 01 
(a > 0) if there exists a generalized control v E M,,.(v), such that system (1.4) with 
u(t)= v(t) has a solution Y (t) satisfying the conditions Y(z)= zO, Y(r + a) = 0. The set 
of all controllable states of system (1.4) in the interval lz,z+ 01 is called the control- 
lable set of the system in that interval. 

Definition 1.3. System (1.4) is said to be uniformly locally controllable if there exist 
numbers s,o>O such that for any z>O the controllable set of system (1.4) in the 
interval [r, r + 0) contains the sphere B, [Ol. 

Together with system (1.4), let us consider the system 

.z' = A (1) r + <II (t), u>, CL E M (V) (1.5) 

It can be shown that, if D (7,~. V) denotes the controllable set of system (1.5) in 
[t, t + of, then 

*+(r 

D(z, o, V) = (- 1 <u(t), @ (~7 t)a> dt, IL E M,,. (V)} 
T 

where Q, (., .) is the Cauchy operator of the system I'= A (t) z.‘lt follows from the equality{<p (t), 
@ (r, t) u>, p E Mr, ,, (V)l = conv {@ A, t) V (t))> t 7 f t- Z, T -k 01 and the condition V (t) E cmv ((R”) that 

D (~7 u, V) = - 5 (I) (T, t) Ii (t) dt 
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The integral on the right of this equality is understood as a Lyapunov integral /3, p. 
2391. Hence system (1.5) is uniformly locally controllable (ULCJ in the class of generalized 
controls if and only if the linear system 

.1.* A (t) z -c u. I, f== V (t) I I .li) 

is ULC. 

Lermna 1.1. Let system (1.5) be equipolarly locally controllable, and let E,u>O be 
the numbers appearing in the definition of ULC for the system. 

Assume, moreover, that the function g(t, z:, u) satisfies conditions 1, 2 and that at least 
one of the following conditions holds: 

Then there exists 6 E (0, yl such that for any function ytz c(H, &[01) the system 

.c' = A (t) 5 + (1~ (t), u + R (t, y (0, u)>, J' F M (6V) (1.X) 

is ULC and for any t> 0 and 

r0 E Bep,jz IOI, y1 f e-ecoW(30) (1.9) 

there exists a generalized control Y EM,,. (6V) such that if p(t)=?(t) system (1.8) has 
a solution z(t) such that 

z(z)=zo. z(z.+o)=o and 2 (t) E & 101 for t E h, z + ul. 

Proof. The constant 6>0 is chosen in the same way as the analogous constant in the 
case of ordinary controls (see Lemma 2.1 in /4/). A direct check will convince the reader 
that 

Y E c (T, B, IO]), T = IT, z + ul 

is the controllable set for system (1.8) in the interval [r, r+ 01. Now, noting that 

for a.e. tE T, one completes the proof by analogy with Lemma 2.1 of /4/. 

2. Theorem 2.1. Let system (1.5) be ULC (which is true, as noted above, if and only if 
system (1.6) is ULC), and let e, o>O be the numbers appearing in the definition of ULC for 
this system. Assume that the function g(t,s, u) satisfies conditions 1, 2. Then, if one of 
conditions (1.7) is satisfied, system (1.4) is ULC. 

Proof. If one of conditions (1.7) is satisfied, then by Lemma 1.1 there exists 6 ~5 (0,yl 
such that system (1.8) is ULC. Choose any r > 0,x,, satisfying condition (1.9) and a function 
y, E c (T, Ba to]), where T + IT, z + al. Again by Lemma 1.1, there exists a generalized 
control p1 E M,,. (6V), such that if p (t) = p1 (t) and Y (t) = Y, (t) system (1.8) has a 
solution Y, (t) such that y, (t) E & 101, t E T, and y, (7) = x0, y, (z f u) = 0. Similarly, if 

Y (t) = Ya (1) there exists a generalized control ILL 6~ MT.. WY) such that when Y (0 = Yz (0 
system (1.8) has a solution y, (t)EBalOl, tE T and y, (7) = .rO, y, (.c + a) = 0. Continuing 
this procedure, we finally obtain a sequence of absolutely continuous functions {y,)& and 

a sequence of generalized controls {p,)& cM,,,,(6V) such that 
&[Ol, tE T, j = 1, 2, . . . 

yf (r) = so, yl (z + u) = 0, yj (t) E 
and 

Yl+l Ct) = @ tt7 %) [% + S (Pj ts)t @ (Tv s)(” + R (S* Y] (S)v U))> ds] (2.1) 
T 

Moreover, the sequence of functions {y,}& is equicontinuous. Consequently, by the 
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Arzela-Ascoli theorem /5, p.236/ one can extract from {yl)gl a subsequence {Y,,}r=r which 

converges uniformly to a function z~C(T,Ba[01). Clearly, z (T) = xO,z (z + a) = 0. But 

MT,. PV is a compact subset of the space (NT, II * Ild - Hence we can extract from {P&=1 

a subsequence which converges (in the weak norm 11 . II,) to a generalized control Y E M,,.(bF). 
Let us assume that Pjr+v as k-too. This means that for any function 'p E LT 

lim \(pjI((s), cp(s, u)> ds = 5 (v(s), q(~,~))ds 
k-m+ T 

(here see (l.l)), but since for every t E T the map (s, u) -+ X[r, tl (S) Y (T, S, u), where 

Y (T, s, u) e= 4, (7, s) (u + g b-9 z b), u)) (2.2) 

and Xp. 11 (*) is the characteristic function of [r, 11, is a member of LT, it follows that 

lim S +jt (+ xp. t] (s) Y(L s, U) ds = S (v (sh x[T. t](s) Y (L ~9 u)> ds 
k-.ca T T 

This limit relation, together with (2.1), implies that 

z 0) = 6, (t, 7) [q + i (v (s), ‘y (.c, s, u)> ds] 
T 

for all t E T t lz, z + 01, and z (z) = x0, z (T + a) = 0. 
Thus, for any z0 which satisfies condition (1.9), there exists a generalized control 

v E MT,. (W c MT,. (V) such that system (1.4) with p(t)= v(t) has a solution z (t) for 
which z(%)=q,,z(z+ u)=O, i.e., for all z>O the sphere B,V,~I IO1 is contained in 

the controllable set of system (1.4) in tz. z + 01. 
Let K (t) be the closure of the conical hull of v 0). 

Corollary 2.1. Suppose that the system 

Z' = A (t) x + u, u E K (t) (2.3) 

is ULC; let a, o>O be the numbers figuring in the definition of ULC for the system, and 
assume that g(t,s, u) satisfies conditions 1, 2. Then, if one of conditions (1.7) holds, 
system (1.4) is ULC. 

The proof follows from Theorem 2.1 and the results of /6/. 
It should be mentioned that in some cases the question of whether system (2.3) is ULC is 

easier to handle than in the case of system (1.6), since the structure of the set of admissible 
controls becomes simpler*. (*For example see TONKOV E.L. and IVANOV A.G., Uniform local con- 
trollability in the critical case and questions of oscillation. Preprint FTI Ural. Otd. Akad. 
Nauk SSSR, Sverdlovsk, 1986.) 

Now, since I (V)C M(V)(Z(V) is identified with M’(V)), it follows that whenever system 
(1.2) is ULC, the same is true of system (1.4). But if for all z>O the sphere B,[O) is 
contained in the controllable set of system (1.4) in [7, 7 + al, then one cannot generally 
state, without further assumptions (e.g., that the velocity field is convex /7, 8/), that 
B, 101 lies in the controllable set of system (1.2) in (r,~+ ul. Nevertheless, the follow- 
ing theorem is true. 

Theorem 2.2. Under the assumptions of Theorem 2.1, let the function g(t,s,u) satisfy 
the following additional conditions: 

3) there exists a function x1 EX('.~) such that for all x1, z, E Ba lOI (concerning the 
constant 6 > 0, as well as the other constants e,o,y, mentioned below, see Lemma 1.1 and 
Theorem 2.1) and u E- U 1 g (t, x1, u) - g (t, zB, u) I Q x1 (t) I z1 - x2 I. Then any point z,, satisfying 
(1.9) for any 223-o can be steered to any preassigned neighbourhood of zero in I?, 'c + ul 
by means of controls from Z(V). 

Proof. By Theorem 2.1, for any ~20, x0 which satisfy (1.9), there exists a general- 
ized control v E M,,.(V) such that system (1.4) with p(t)= v(t) has a solution z(t)= Ba lOI, 
t E T e [z,r + ul and z (r) = zO,z (z + a) = 0. By the approximation lemma /2, 7/, there exists 
a sequence of functions {u,)~_lc Z(v), such that 6 u,* v as j+c0. Now, if 2, (t) is 

a Solution of SySteIII !1.4) with initial condition zJ((z)= X0, corresponding to the control 
P 0) = 81ZJ(f,, then 
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Using the Gronwall-Bellman inequality, we get 

(the map 'Y (z, s, u) is defined by formula (2.2)). 
It follows from the conditions imposed on the function g(t,x,u) 

I (T, s, u) lies in LT. Hence it follows from the condition: 6,+v 

0 as j+o?; together with (2.41, this proves Theorem 2.2. 

3. We will now establish a sufficient condition for the uniform 
of a system 

(2.4) 

that the map (s, u) -+ 
as j-w= that lim65 = 

local controllability 

x’=(p (t), f (t, x, u)), 5 E R”, p 53 M (Q), 62 E cow Cl?“) (3.1) 

where it is not assumed that f is differentiable with respect to u (i.e., system (3.1) cannot 
be expressed in the form (1.4)), and answer certain questions posed in /l/. 

The function f: R X [R” X g--c R” is assumed to satisfy the following conditions: 
4) the map f+f(t,s,u),(s,u)~ &j" x Q is measurable, f (t, O,O)= 0 and for any compact set 

Kc IR" there exists a function YK~ XQ+ *) such that 

rnalfif(t,x,u)I,(I,u)EI(X~}~Y~(t) 

5) the map r+f(t, x, a), (t, u)E R X 62 is differentiable: the maps n-+-f (t, 0, u), u--f 
f,' (t, 0, n). t E u? are such that for any q>O there exists h >0 for which 

tt1 

z; s (If(~~O~~)l+/f~(~,~,U)-_I,I(S,O,O)/)ds<~, uEBa(0) 
fl t 

Consider the system 

2’ = (p (t)), f,’ (f, 0, u)> x + <p Q), f (L 0, u) + r (4 Xl u)‘, (3.2) 

with p E IV@), where the function r: R X R” X Q-+Rn satisfies the following conditions: 
6) the map t+ r(t,t,n),(;d, u)E [R"' X SJ is measurable, r(t,...)E C(R~XQ),tE!s? and 

for any compact set KC R" there exists a function xx e X(1.1) such that 

mag f! r (1, I, n) it (I, n)E K X 8) < XK (t) 

7) there exist a function a E X(1,f) and a constant a>0 such that 

I r fL x, u) I < a V) I 5 IT v(t, 5, U)FRXBylO1 x 62 (y>Oj 

We shall also assume that system (3.2) has the right uniqueness property. 
Let 

and choose 8s (0, yl so that 

(3.3). 

Clearly, if systen (3.2) is ULC for Pam, then it is also ULC for +&EM&?). 

Theorem 3.1. Let f: WxW"x62~IRn,r:WXWnXD-cRn be functions satisfying con- 
ditions 4, 5 and 6, 7, respectively. Then system (3.2) with p E M(f&$ (consequently, also 
with p~kf(O)) is ULC if it is ULC for r=O and P E M (6da). 

Theorem 3.1 answers certain questions posed in /I/. It should also be noted that it is 
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useful in studying controllability questions for system (3-l) when f,‘(t,O,o) ~0 and f is not 
differentiable with respect to U. 

To prove the theorem, we need a few facts and some notation. 
Let @(t, s; p) be the Cauchy operator of the system 

One verifies directly that 

T+d 

Dz (CT) + { - 1 <cl (t), 0 (z, t; @) f (t, 0, u)> & P E MT, (I 6%)) (3.4) 
T 

is the controllable set of systea (3.21 with r = 0, pE&,cr @a), and I), ~U~}~~*~o~~, if 
a,< 0,. We may therefore assume that a>$. 

Lema 3.1. For any r> 0 D,(u)~conv(W"). 

PPOOf. Using the condition ~(0 ~rpm (Q), one can shown that 

max 4) (z, t; a) t Q GM 
~c~~T*a 

for all z>O. Hence it follows that the set 

Icr(% @ W G Pffk 0, G>? IL= iw,,, @,)),IET-LfS,7fd 

is bounded and therefore, by a theorem of Lyapunov /3, p.350/, Ds(u) is a bounded convex 
subset of UP. 

kie assert that it is also closed. Let {q}r& CD,(o) and suppose that xi-t* as j-+m. 
Then (see 13.411 

"j= - s 'rlj ($1, Q(T, S; pj)f(s, 0, I+)> dS 
T 

Since W"lfpt C M,,, CQ41, and I&~@&) is a convex compact subset of the space VT, R * lluJ* 

we may assume that Iim [pj-~pljitl=O and ~0~~z,d(4). Hence, 
ja 

which in turn implies that the sequence (Q, (7, t; pj))& converges uniformly to @(T, t; pa) as 
i-00. Therefore, 

X, = -S <PO (*h @ (7. s; PO) f c% 0, u)> ds 
T 

I.e., q cz D, (~1. This proves Lemma 3.1. 

LG%i?m 3.2. Suppose that for rs 0, p EM(C&) system (3.2) is WC!, i.e., for all r> 0 
and some a, u > 0 B, 101 CD, (a), the constant S>O is defined by (3.31 and 

Then fox any 

where p EM (bdd)+ 

function yE C{!R, B, (01) the system 

x* = <P (% f,' 0, 0, 4) x + <r ft), f (k 0, 24 -I- r 6 Y WV 10) (3.5) 

is ULC, and moreover for any z > O,xo~Qa IO] there exists a generalized 
control YE MT,.(&) such that if & (2) =;v(t) system (3.5) has a solution 
k, z + al 

x(t)EEB,IOl, tE 
and r(r) = SO? 5 (5 + a) = 0. 

Lemma 3.2 is proved with the help of Lemma 3.1, in a manner similar to the proof of 
Lemma 1.1. 

Now, using the scheme of proof of Theorem 2.1. and Lemma 3.2, one can prove Theorem 3.1. 

4. In recent years generalized controls have been intensively utilized both in optimal 
control problems and in game-theoretic situations (see, e.g., 12, 7-ill and the references 
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cited therein)*. (*See also CHENTSOV A.G., Optimization under conditions of fuzzy constraints. 
Preprint, Inst. Mat. Mekh., Akad. Nauk SSSR, Sverdlovsk, 1986.) In this paper the apparatus 
of generalized controls has been used to investigate uniform local controllability for a non- 
linear system. Our results are important for studies of stability and well-posedness in "main- 
line processes" (MP). 

A brief explanation is in order. In the simplest situation, a MP (z(.),c~ 1.1) is a 
solution of the problem 

where D is some set of functions, specifying the boundary conditions (for example, D might 
be a set of periodic or almost-periodic functions), and I a functional defined on D. Let 
us say that the process (z(.), w(.)) is uniformly locally stable (or that the problem of the 
MP is well-posed) if there exist c,c>o such that for any %>8 and any x0 E B, [O] there 
is a control 

ug : [T. T -I a] - R (t) =L u - IO (t) 
such that the system 

5' = fa (2 (Q + 5, w (t) + u) -- 2' (1) (4.2) 
with u = u,, (f), has a solution z(t) which satisfies the conditions s(~)==,,,z(r+ u)= 0 (i.e., 
the disturbed motion returns to the main line). 

This problem possesses several features that make it difficult to handle. First, a MP is 
defined on the entire real line, so it is important for the local controllability property to 
be uniform in the time t. Second, since m(t) is optimal, one has the condition 0~ a62 (t) for 
all t (i.e., one has the so-called critical case); and, finally, system (4.2) is time-depen- 
dent. 

Having rewrittensystem (4.2) in the form of (1.2) with 

one can apply the main theorem of /4/. But under the conditons cited in that paper, apart 
from the assumptions of Theorem 2.1 one also demands that the map II (.) - T (7. z; Y (a)) be con- 
tinuous for every fixed pair (t,z), where T (7, 2; Y (-)) is the time needed by the system z'= 
A (t) z + u + g (t, Y (0, II) to get to zero from the position (1, 5). As shown by Theorem 2.1, this 
condition is superfluous in the class of generalized controls. 

Next, if the function f. is not differentiable with respect to u, then.Theorem 3.1 can 
be returned to the main line. 

Finally, as can be shown by examples, a solution of problem (4.1) may not exist in D. 
nevertheless, for natural assumptions on fo, the "convexified" problem for (4.1) has a sol- 
ution (z(.),~(.)) which is a generalized MP. In that case one can use Theorem 2.2. 
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